Published on Mar 09, 2021 by Anup Naick
Gate 2021 Physics Syllabus PH : https://gate.iitb.ac.in : Graduate Aptitude Test in Engineering (GATE) is a national examination, conducted jointly by Indian Institute of Science (IISc) Bangalore and seven Indian Institutes of Technology (IITs) at Bombay, Delhi, Guwahati, Kanpur, Kharagpur, Madras and Roorkee on behalf of National Coordination Board (NCB)-GATE, Department of Higher Education, Ministry of Education (MoE), Government of India. GATE examination is a Computer Based Test (CBT).
GATE 2021 will be conducted for 27 Subjects (also referred to as “papers”).
GATE 2021 examination will be conducted over six days and twelve sessions on Friday 5th, Saturday 6th, Sunday 7th, Friday 12th, Saturday 13th and Sunday 14th of February 2021.
Vector calculus: linear vector space: basis, orthogonality and completeness; matrices; similarity transformations, diagonalization, eigenvalues and eigenvectors; linear differential equations: second order linear differential equations and solutions involving special functions; complex analysis: Cauchy-Riemann conditions, Cauchy's theorem, singularities, residue theorem and applications; Laplace transform, Fourier analysis; elementary ideas about tensors: covariant and contravariant tensors.
Lagrangian formulation: D'Alembert's principle, Euler-Lagrange equation, Hamilton's principle, calculus of variations; symmetry and conservation laws; central force motion: Kepler problem and Rutherford scattering; small oscillations: coupled oscillations and normal modes; rigid body dynamics: interia tensor, orthogonal transformations, Euler angles, Torque free motion of a symmetric top; Hamiltonian and Hamilton's equations of motion; Liouville's theorem; canonical transformations: action-angle variables, Poisson brackets, Hamilton-Jacobi equation.
Special theory of relativity: Lorentz transformations, relativistic kinematics, mass-energy equivalence.
Solutions of electrostatic and magnetostatic problems including boundary value problems; method of images; separation of variables; dielectrics and conductors; magnetic materials; multipole expansion; Maxwell's equations; scalar and vector potentials; Coulomb and Lorentz gauges; electromagnetic waves in free space, non-conducting and conducting media; reflection and transmission at normal and oblique incidences; polarization of electromagnetic waves; Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge.
Postulates of quantum mechanics; uncertainty principle; Schrodinger equation; Dirac Bra-Ket notation, linear vectors and operators in Hilbert space; one dimensional potentials: step potential, finite rectangular well, tunneling from a potential barrier, particle in a box, harmonic oscillator; two and three dimensional systems: concept of degeneracy; hydrogen atom; angular momentum and spin; addition of angular momenta; variational method and WKB approximation, time independent perturbation theory; elementary scattering theory, Born approximation; symmetries in quantum mechanical systems.
Laws of thermodynamics; macrostates and microstates; phase space; ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck's distribution law; Bose-Einstein condensation; first and second order phase transitions, phase equilibria, critical point.
Spectra of one-and many-electron atoms; spin-orbit interaction: LS and jj couplings; fine and hyperfine structures; Zeeman and Stark effects; electric dipole transitions and selection rules; rotational and vibrational spectra of diatomic molecules; electronic transitions in diatomic molecules, Franck-Condon principle; Raman effect; EPR, NMR, ESR, X-ray spectra; lasers: Einstein coefficients, population inversion, two and three level systems.
Elements of crystallography; diffraction methods for structure determination; bonding in solids; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids: nearly free electron and tight binding models; metals, semiconductors and insulators; conductivity, mobility and effective mass; Optical properties of solids; Kramer's-Kronig relation, intra- and inter-band transitions; dielectric properties of solid; dielectric function, polarizability, ferroelectricity; magnetic properties of solids; dia, para, ferro, antiferro and ferri-magnetism, domains and magnetic anisotropy; superconductivity: Type-I and Type II superconductors, Meissner effect, London equation, BCS Theory, flux quantization.
Semiconductors in equilibrium: electron and hole statistics in intrinsic and extrinsic semiconductors; metal-semiconductor junctions; Ohmic and rectifying contacts; PN diodes, bipolar junction transistors, field effect transistors; negative and positive feedback circuits; oscillators, operational amplifiers, active filters; basics of digital logic circuits, combinational and sequential circuits, flip-flops, timers, counters, registers, A/D and D/A conversion.
Nuclear radii and charge distributions, nuclear binding energy, electric and magnetic moments; semi-empirical mass formula; nuclear models; liquid drop model, nuclear shell model; nuclear force and two nucleon problem; alpha decay, beta-decay, electromagnetic transitions in nuclei; Rutherford scattering, nuclear reactions, conservation laws; fission and fusion; particle accelerators and detectors; elementary particles; photons, baryons, mesons and leptons; quark model; conservation laws, isospin symmetry, charge conjugation, parity and time-reversal invariance.
A candidate may appear either in ONE or TWO subject papers. For candidates who choose TWO papers, the combination must be from the approved list of combinations and subject to the availability of infrastructure and date.
Environmental Science and Engineering (ES) and Humanities and Social Sciences (XH) are two new papers introduced in GATE-2021.
Particulars |
Details |
Examination Mode |
Computer Based Test (CBT) |
Duration |
3 Hours |
Number of Subjects (Papers) |
27 |
Sections |
General Aptitude (GA) + Candidate’s Selected Subject |
Type of Questions |
|
Questions test these abilities |
|
Number of Questions |
10 (GA) + 55 (subject) = 65 Questions |
Distribution of Marks in all Papers EXCEPT papers AR, CY, EY, GG, MA, PH, XH and XL |
General Aptitude: 15 Marks + Engineering Mathematics: 13 Marks + Subject Questions: 72 Marks = Total: 100 Marks |
Distribution of Marks in papers AR, CY, EY, GG, MA, PH, XH and XL |
General Aptitude: 15 Marks + Subject Questions: 85 Marks = Total: 100 Marks |
Marking Scheme |
All of the questions will be of 1 mark or 2 marks |
Paper Code |
General Aptitude (GA) Marks |
Subject Marks |
Total Marks |
Total Time (Minutes) |
AE, AR, AG, BT, CE, CH, CS, CY, EC, EE, ES, EY, IN, MA, ME, MN, MT, PE, PH, PI, TF, ST and BM |
15 |
85 |
100 |
180 |
GG [Part A + Part B (Section 1 Geology OR Section 2 Geophysics)] |
15 |
25 + 60 |
100 |
180 |
XE (Section A + Any TWO Sections) |
15 |
15 + (2 x 35) |
100 |
180 |
XH (Section B1 + Any ONE Section) |
15 |
25 + (1 x 60) |
100 |
180 |
XL (Section P + Any TWO Sections) |
15 |
25 + (2 x 30) |
100 |
180 |
Candidates opting to appear in TWO subject papers must have a primary choice of paper, which will be their default choice and second choice of paper, which has to be chosen from the allowed combinations. Combinations other than the listed ones are NOT allowed. Under unforeseen circumstances, GATE 2021 committee has the rights to remove certain combinations at a later date. In such case, the fee paid towards the second paper will be refunded to the candidates. Also note that the examination centre for candidate to appear for the second paper may be different (but in same city) from that for the first paper due to the infrastructure and scheduling constraints. GATE committee is NOT liable for any legal obligations related to this issue.