Published on Mar 09, 2021 by Anup Naick
Gate 2021 Electronics and Communications Syllabus EC : https://gate.iitb.ac.in : Graduate Aptitude Test in Engineering (GATE) is a national examination, conducted jointly by Indian Institute of Science (IISc) Bangalore and seven Indian Institutes of Technology (IITs) at Bombay, Delhi, Guwahati, Kanpur, Kharagpur, Madras and Roorkee on behalf of National Coordination Board (NCB)-GATE, Department of Higher Education, Ministry of Education (MoE), Government of India. GATE examination is a Computer Based Test (CBT).
GATE 2021 will be conducted for 27 Subjects (also referred to as “papers”).
GATE 2021 examination will be conducted over six days and twelve sessions on Friday 5th, Saturday 6th, Sunday 7th, Friday 12th, Saturday 13th and Sunday 14th of February 2021.
Linear Algebra: Vector space, basis, linear dependence and independence, matrix algebra, eigenvalues and eigenvectors, rank, solution of linear equations- existence and uniqueness.
Calculus: Mean value theorems, theorems of integral calculus, evaluation of definite and improper integrals, partial derivatives, maxima and minima, multiple integrals, line, surface and volume integrals, Taylor series.
Differential Equations: First order equations (linear and nonlinear), higher order linear differential equations, Cauchy's and Euler's equations, methods of solution using variation of parameters, complementary function and particular integral, partial differential equations, variable separable method, initial and boundary value problems.
Vector Analysis: Vectors in plane and space, vector operations, gradient, divergence and curl, Gauss's, Green's and Stokes’ theorems.
Complex Analysis: Analytic functions, Cauchy’s integral theorem, Cauchy’s integral formula, sequences, series, convergence tests, Taylor and Laurent series, residue theorem.
Probability and Statistics: Mean, median, mode, standard deviation, combinatorial probability, probability distributions, binomial distribution, Poisson distribution, exponential distribution, normal distribution, joint and conditional probability.
Circuit analysis: Node and mesh analysis, superposition, Thevenin's theorem, Norton’s theorem, reciprocity. Sinusoidal steady state analysis: phasors, complex power, maximum power transfer. Time and frequency domain analysis of linear circuits: RL, RC and RLC circuits, solution of network equations using Laplace transform.
Linear 2-port network parameters, wye-delta transformation.
Continuous-time signals: Fourier series and Fourier transform, sampling theorem and applications.
Discrete-time signals: DTFT, DFT, z-transform, discrete-time processing of continuous-time signals. LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeroes, frequency response, group delay, phase delay.
Energy bands in intrinsic and extrinsic semiconductors, equilibrium carrier concentration, direct and indirect band-gap semiconductors.
Carrier transport: diffusion current, drift current, mobility and resistivity, generation and recombination of carriers, Poisson and continuity equations.
P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photo diode and solar cell.
Diode circuits: clipping, clamping and rectifiers.
BJT and MOSFET amplifiers: biasing, ac coupling, small signal analysis, frequency response. Current mirrors and differential amplifiers.
Op-amp circuits: Amplifiers, summers, differentiators, integrators, active filters, Schmitt triggers and oscillators.
Number representations: binary, integer and floating-point- numbers. Combinatorial circuits: Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, decoders.
Sequential circuits: latches and flip-flops, counters, shift-registers, finite state machines, propagation delay, setup and hold time, critical path delay.
Data converters: sample and hold circuits, ADCs and DACs. Semiconductor memories: ROM, SRAM, DRAM.
Computer organization: Machine instructions and addressing modes, ALU, data-path and control unit, instruction pipelining.
Basic control system components; Feedback principle; Transfer function; Block diagram representation; Signal flow graph; Transient and steady-state analysis of LTI systems; Frequency response; Routh-Hurwitz and Nyquist stability criteria; Bode and root-locus plots; Lag, lead and lag-lead compensation; State variable model and solution of state equation of LTI systems.
Random processes: autocorrelation and power spectral density, properties of white noise, filtering of random signals through LTI systems.
Analog communications: amplitude modulation and demodulation, angle modulation and demodulation, spectra of AM and FM, superheterodyne receivers.
Information theory: entropy, mutual information and channel capacity theorem.
Digital communications: PCM, DPCM, digital modulation schemes (ASK, PSK, FSK, QAM), bandwidth, inter-symbol interference, MAP, ML detection, matched filter receiver, SNR and BER.
Fundamentals of error correction, Hamming codes, CRC.
Maxwell's equations: differential and integral forms and their interpretation, boundary conditions, wave equation, Poynting vector.
Plane waves and properties: reflection and refraction, polarization, phase and group velocity, propagation through various media, skin depth.
Transmission lines: equations, characteristic impedance, impedance matching, impedance transformation, S-parameters, Smith chart.
Rectangular and circular waveguides, light propagation in optical fibers, dipole and monopole antennas, linear antenna arrays.
A candidate may appear either in ONE or TWO subject papers. For candidates who choose TWO papers, the combination must be from the approved list of combinations and subject to the availability of infrastructure and date.
Environmental Science and Engineering (ES) and Humanities and Social Sciences (XH) are two new papers introduced in GATE-2021.
Particulars |
Details |
Examination Mode |
Computer Based Test (CBT) |
Duration |
3 Hours |
Number of Subjects (Papers) |
27 |
Sections |
General Aptitude (GA) + Candidate’s Selected Subject |
Type of Questions |
|
Questions test these abilities |
|
Number of Questions |
10 (GA) + 55 (subject) = 65 Questions |
Distribution of Marks in all Papers EXCEPT papers AR, CY, EY, GG, MA, PH, XH and XL |
General Aptitude: 15 Marks + Engineering Mathematics: 13 Marks + Subject Questions: 72 Marks = Total: 100 Marks |
Distribution of Marks in papers AR, CY, EY, GG, MA, PH, XH and XL |
General Aptitude: 15 Marks + Subject Questions: 85 Marks = Total: 100 Marks |
Marking Scheme |
All of the questions will be of 1 mark or 2 marks |
Paper Code |
General Aptitude (GA) Marks |
Subject Marks |
Total Marks |
Total Time (Minutes) |
AE, AR, AG, BT, CE, CH, CS, CY, EC, EE, ES, EY, IN, MA, ME, MN, MT, PE, PH, PI, TF, ST and BM |
15 |
85 |
100 |
180 |
GG [Part A + Part B (Section 1 Geology OR Section 2 Geophysics)] |
15 |
25 + 60 |
100 |
180 |
XE (Section A + Any TWO Sections) |
15 |
15 + (2 x 35) |
100 |
180 |
XH (Section B1 + Any ONE Section) |
15 |
25 + (1 x 60) |
100 |
180 |
XL (Section P + Any TWO Sections) |
15 |
25 + (2 x 30) |
100 |
180 |
Candidates opting to appear in TWO subject papers must have a primary choice of paper, which will be their default choice and second choice of paper, which has to be chosen from the allowed combinations. Combinations other than the listed ones are NOT allowed. Under unforeseen circumstances, GATE 2021 committee has the rights to remove certain combinations at a later date. In such case, the fee paid towards the second paper will be refunded to the candidates. Also note that the examination centre for candidate to appear for the second paper may be different (but in same city) from that for the first paper due to the infrastructure and scheduling constraints. GATE committee is NOT liable for any legal obligations related to this issue.