Published on Mar 09, 2021 by Anup Naick
Gate 2021 Biomedical Engineering Syllabus BM : https://gate.iitb.ac.in : Graduate Aptitude Test in Engineering (GATE) is a national examination, conducted jointly by Indian Institute of Science (IISc) Bangalore and seven Indian Institutes of Technology (IITs) at Bombay, Delhi, Guwahati, Kanpur, Kharagpur, Madras and Roorkee on behalf of National Coordination Board (NCB)-GATE, Department of Higher Education, Ministry of Education (MoE), Government of India. GATE examination is a Computer Based Test (CBT).
GATE 2021 will be conducted for 27 Subjects (also referred to as “papers”).
GATE 2021 examination will be conducted over six days and twelve sessions on Friday 5th, Saturday 6th, Sunday 7th, Friday 12th, Saturday 13th and Sunday 14th of February 2021.
Linear Algebra: Matrix algebra, systems of linear equations, Eigenvalues and Eigenvectors.
Calculus: Mean value theorems, theorems of integral calculus, partial derivatives, maxima and minima, multiple integrals, Fourier series, vector identities, line, surface and volume integrals, Stokes, Gauss and Green's theorems.
Differential equations: First order linear and nonlinear differential equations, higher order linear differential equations with constant coefficients, method of separation of variables, Cauchy's and Euler's equations, initial and boundary value problems, solution of partial differential equations.
Analysis of complex variables: Analytic functions, Cauchy's integral theorem and integral formula, Taylor's and Laurent's series, residue theorem.
Probability and Statistics: Sampling theorems, conditional probability, mean, median, mode and standard deviation, random variables, discrete and continuous distributions: normal, Poisson and binomial distributions. Tests of Significance, statistical power analysis, and sample size estimation. Linear Regression and correlation analysis;
Numerical Methods: Matrix inversion, numerical solutions of nonlinear algebraic equations, iterative methods for solving differential equations, numerical integration.
Voltage and current sources - independent, dependent, ideal and practical; v-i relationships of resistor, inductor and capacitor; transient analysis of RLC circuits with dc excitation; Kirchoff’s laws, superposition, Thevenin, Norton, maximum power transfer and reciprocity theorems; Peak, average and rms values of ac quantities; apparent, active and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, realization of basic filters with R, L and C elements, Bode plot.
Continuous and Discrete Signal and Systems - Periodic, aperiodic and impulse signals; Sampling theorem; Laplace and Fourier transforms; impulse response of systems; transfer function, frequency response of first and second order linear time invariant systems, convolution, correlation. Discrete time systems - impulse response, frequency response, DFT, Z - transform; basics of IIR and FIR filters.
Basic characteristics and applications of diode, BJT and MOSFET; Characteristics and applications of operational amplifiers - difference amplifier, adder, subtractor, integrator, differentiator, instrumentation amplifier, buffer, filters and waveform generators. Number systems, Boolean algebra; combinational logic circuits - arithmetic circuits, comparators,
Schmitt trigger, encoder/decoder, MUX/DEMUX, multi-vibrators; Sequential circuits - latches and flip flops, state diagrams, shift registers and counters; Principles of ADC and DAC; Microprocessor- architecture, interfacing memory and input- output devices.
SI units, systematic and random errors in measurement, expression of uncertainty -accuracy and precision index, propagation of errors; PMMC, MI and dynamometer type instruments; dc potentiometer; bridges for measurement of R, L and C, Q-meter. Basics of control system - transfer function.
Sensors - resistive, capacitive, inductive, piezoelectric, Hall effect, electro chemical, optical; Sensor signal conditioning circuits; application of LASER in sensing and therapy. Origin of biopotentials and their measurement techniques - ECG, EEG, EMG, ERG, EOG, GSR, PCG, Principles of measuring blood pressure, body temperature, volume and flow in arteries, veins and tissues, respiratory measurements and cardiac output measurement. Operating principle of medical equipment -sphygmomanometer, ventilator, cardiac pacemaker, defibrillator, pulse oximeter, hemodialyzer Electrical Isolation (optical and electrical) and Safety of Biomedical Instruments.
Basics of cell, types of tissues and organ systems; Homeostasis; Basics of organ systems - musculoskeletal, respiratory, circulatory, excretory, endocrine, nervous, gastro-intestinal and reproductive.
Basic physics, Instrumentation and image formation techniques in medical imaging modalities such as X-Ray, Computed Tomography, Single Photon Emission Computed Tomography, Positron Emission Tomography, Magnetic Resonance Imaging, Ultrasound.
Kinematics of muscles and joints - free-body diagrams and equilibrium, forces and stresses in joints, biomechanical analysis of joints, Gait analysis; Hard Tissues - Definition of Stress and Strain, Deformation Mechanics, structure and mechanical properties of bone - cortical and cancellous bones; Soft Tissues - Structure, functions, material properties, viscoelastic properties, Maxwell & Voight models; Biofluid mechanics - Flow properties of blood in the intact human cardiovascular system.
Basic properties of biomaterials - Metallic, Ceramic, Polymeric and Composite; Fundamental characteristics of implants - biocompatibility, bioactivity, biodegradability; Basics of drug delivery; Basics of tissue engineering. Biomaterial characterization techniques - Rheology, Atomic Force Microscopy, Electron Microscopy, Transmission Electron Microscopy Fourier Transform Infrared Spectroscopy.
A candidate may appear either in ONE or TWO subject papers. For candidates who choose TWO papers, the combination must be from the approved list of combinations and subject to the availability of infrastructure and date.
Environmental Science and Engineering (ES) and Humanities and Social Sciences (XH) are two new papers introduced in GATE-2021.
Particulars |
Details |
Examination Mode |
Computer Based Test (CBT) |
Duration |
3 Hours |
Number of Subjects (Papers) |
27 |
Sections |
General Aptitude (GA) + Candidate’s Selected Subject |
Type of Questions |
|
Questions test these abilities |
|
Number of Questions |
10 (GA) + 55 (subject) = 65 Questions |
Distribution of Marks in all Papers EXCEPT papers AR, CY, EY, GG, MA, PH, XH and XL |
General Aptitude: 15 Marks + Engineering Mathematics: 13 Marks + Subject Questions: 72 Marks = Total: 100 Marks |
Distribution of Marks in papers AR, CY, EY, GG, MA, PH, XH and XL |
General Aptitude: 15 Marks + Subject Questions: 85 Marks = Total: 100 Marks |
Marking Scheme |
All of the questions will be of 1 mark or 2 marks |
Paper Code |
General Aptitude (GA) Marks |
Subject Marks |
Total Marks |
Total Time (Minutes) |
AE, AR, AG, BT, CE, CH, CS, CY, EC, EE, ES, EY, IN, MA, ME, MN, MT, PE, PH, PI, TF, ST and BM |
15 |
85 |
100 |
180 |
GG [Part A + Part B (Section 1 Geology OR Section 2 Geophysics)] |
15 |
25 + 60 |
100 |
180 |
XE (Section A + Any TWO Sections) |
15 |
15 + (2 x 35) |
100 |
180 |
XH (Section B1 + Any ONE Section) |
15 |
25 + (1 x 60) |
100 |
180 |
XL (Section P + Any TWO Sections) |
15 |
25 + (2 x 30) |
100 |
180 |
Candidates opting to appear in TWO subject papers must have a primary choice of paper, which will be their default choice and second choice of paper, which has to be chosen from the allowed combinations. Combinations other than the listed ones are NOT allowed. Under unforeseen circumstances, GATE 2021 committee has the rights to remove certain combinations at a later date. In such case, the fee paid towards the second paper will be refunded to the candidates. Also note that the examination centre for candidate to appear for the second paper may be different (but in same city) from that for the first paper due to the infrastructure and scheduling constraints. GATE committee is NOT liable for any legal obligations related to this issue.