Abstract
Several intrusion detection techniques (IDTs) proposed for mobile ad hoc networks rely on each node passively monitoring the data forwarding by its next hop. This paper presents quantitative evaluations of false positives and their impact on monitoring-based intrusion detection for ad hoc networks. Experimental results show that, even for a simple three-node configuration, an actual ad hoc network suffers from high false positives; these results are validated by Markov and probabilistic models. However, this false positive problem cannot be observed by simulating the same network using popular ad hoc network simulators, such as ns-2, OPNET or Glomosim.
To remedy this, a probabilistic noise generator model is implemented in the Glomosim simulator. With this revised noise model, the simulated network exhibits the aggregate false positive behavior similar to that of the experimental testbed. Simulations of larger (50-node) ad hoc networks indicate that monitoring-based intrusion detection has very high false positives.
These false positives can reduce the network performance or increase the overhead. In a simple monitoring-based system where no secondary and more accurate methods are used, the false positives impact the network performance in two ways: reduced throughput in normal networks without attackers and inability to mitigate the effect of attacks in networks with attackers
<<
back
Related Projects : Online Real Estate Property Management ,Online Recruitment System ,Online Rental House Web Portal ,Online University ,Optimal Channel Access Management with QoS Support for Cognitive Vehicular Networks ,Optimal Jamming Attacks and Network Defense Policies in Wireless Sensor Networks ,Orkut Using Java ,Personal Authentication Based On Iris Recognition ,Planning of Wireless Sensor Networks ,Predicting Missing Items in Shopping Carts ,Project Controller ,Project Scheduler ,Project Tracking ,Promotional Portal ,Random Cast ,Real-Time Detection Of Clone Attacks ,Reality Shows Organization ,Record Tracker ,Remote Administration using Mobile ,Remote PC Administration Using J2ME ,Resilient Online Coverage For Surveillance Applications , Resource Allocation in OFDMA Wireless Communications Systems Supporting Multimedia Services ,RITAS: Services For Randomized Intrusion Tolerance ,Route Stability in MANETs under the Random Direction Mobility Model ,Script Identification Through Temporal Sequence Of The Strokes ,Secret Key Establishment Using Temporally and Spatially Correlated Wireless Channel Coefficients ,Secure and Policy-Compliant Source Routing ,Secure Data Transmission , Ship Store System ,Smart Network Profile Manager
|