Seminar Topics for Electronics and Communication Report and PPT

Seminar Topics for Electronics and Communication Report and PPT

Huge List of Electronics and Communication ECE Seminar Topics 2024 PPT PDF, Latest Technical ECE Seminar Report with PPT.

Also Explore Embedded, Communication Seminar Papers, Recent Power Electronics Essay Topics, Speech Ideas, Dissertation, Thesis, IEEE And EEE Seminar Topics, Reports, Synopsis, Advantages, Disadvantages, Abstracts, Presentation Slides PDF, DOC and PPT for Final Year BE, B.Tech, M.Tech, MSc, BSc, High School Students.

Hybrid Solar | Seminar Report, PPT, PDF for ECE Students

Solar energy systems come in various configurations, and the choice is yours whether you go off the grid or stay on the grid. This paper discusses the advantages of a Solar hybrid system, grid tied solar system and standalone solar systems (or Off-Grid solar systems). Grid-tied, on-grid, utility-interactive, grid intertie and grid back feeding are all terms used to describe the same concept – a solar system that is connected to the utility power grid.

A. Grid-Tied Solar System

Grid-tied, on-grid, utility-interactive, grid intertie and grid back feeding are all terms used to describe the same concept – a solar system that is connected to the utility power grid.

Hybrid Solar

Advantages:

 As it does not require battery banks and other standalone components, it is relatively cheaper than Off-Grid or hybrid systems.

 It facilitates you to take advantage of net metering. Any extra electricity that you produce can be sold back to the utility. This means that by the end of the month, you only pay for the net kWH electricity used.

Disadvantages:

 Since you do not have a battery bank, you can’t store electricity. If during the night, your grid is down, you will not have any electricity.

 Utility companies charge monthly fees that you’ll need to pay.

Face Liveness Detection | Seminar Report, PPT, PDF for ECE Students

Face spoofing is considered to be one of the prominent threats to face recognition systems. However, in order to improve the security measures of such biometric systems against deliberate spoof attacks, liveness detection has received significant recent attention from researchers. For this purpose, analysis of facial skin texture properties becomes more popular because of its limited resource requirement and lower processing cost.

The traditional method of skin analysis for liveness detection was to use Local Binary Pattern (LBP) and its variants. LBP descriptors are effective, but they may exhibit certain limitations in near uniform patterns. Thus, in this paper, we demonstrate the effectiveness of Local Ternary Pattern (LTP) as an alternative to LBP.

In addition, we adopted Dynamic Local Ternary Pattern (DLTP), which eliminates the manual threshold setting in LTP by using Weber’s law. The proposed method was tested rigorously on four facial spoof databases: three are public domain databases and the other is the Universiti Putra Malaysia (UPM) face spoof database, which was compiled through this study. The results obtained from the proposed DLTP texture descriptor attained optimum accuracy and clearly outperformed the reported LBP and LTP texture descriptors.

UPM Face Spoof Dataset

The UPM face spoof database is collected and compiled during this research work. In our experiment, we follow the standard of data gallery independence in which the first 10 subjects are utilized for training dataset and the images of the remaining 20 subjects are utilized for testing the model. The training and developing set consists of 4500 genuine sample images, and 18,000 sample images are utilized to develop the testing dataset. For spoof attacks, 1500 sample images from all type attacks are designed per subjects. In this manner, 7500 samples images are utilized for training and developing datasets, while the remaining 30,000 fake sample images of 20 subjects are used for testing protocol. These 30 participants are from different ethnicities, between the ages of 20 and 50. Facial images were frontal shots captured using a single view camera, with spatial resolution of 1440  1080 pixels.

The imaging and recording conditions was an indoor environment under uncontrolled illumination. During each session, several variables were considered such as facial expressions, eye blinks, and wearing a scarf. The high resolution image consumes more memory with high computation and time. Therefore, we cropped the region around the frontal faces to 345  400 resolution, while retaining the maximum quality for printing photographs. Fake faces played a very important role in enhancing the challenges for face anti-spoofing algorithms.

Face Liveness Detections

For this purpose, the spoof database is compiled based on variations in terms of textures. We have introduced four different types of paper material in photo attacks: common A4, matt, laminated, and without lamination paper. Furthermore, this study utilized different digital screens such as iPhones, laptops, and tablet PCs for different resolution quality attacks. To make the collected database more challenging in terms of attacks, the images are captured from different distances. Tilted and bended images are also captured in order to increase the level of difficulty.

Battery Less Phones | Seminar Report, PPT, PDF for ECE Students

The smart phones we are using these days are indeed smart, however, are they really that smart as the companies claim? The answer to this question is yes, but aren’t those really dumb if discussed in terms of battery life? Yes, they are. Even the companies that sell smart phones at phenomenal rates have the issue of battery’s performance [1]. The performance is better as compared to others, but it is still a mystery if discussed in terms of long life. The idea of battery less smart phones was initiated by a group of researchers from “The University of Washington”, who invented the phone with a dial pad, and to the next level of astonishment, the phone was designed so that it could harvest energy from “Radio Signals”. The phone developed, features a dial pad, a small led light, and will also include an E-ink display.

Battery Less Phones

A. Perspective for Battery Less Phones

A lot of discrepancies about the battery’s performance were going on around the world. The issue about the battery’s anomalous drain lead to the research of innovative stuff, which furthermore lead to the invention of these Battery Less Mobiles. Smart Phones these days are a real help for the human race, the way they are used to reduce our burden and anxiety by saving our time is just unexplainable, And to the fact that everyone knows about the battery affair, people still purchase phones to stay connected to the world, and hence, these battery less phones were created to replace the battery’s draining issue and to offer an effective method of staying connected to the world.

B. Battery Less Smart Phones Vs Battery Saving Applications

The multi task calculating apps can increase your battery’s life, but to a very small extent. These apps maintain your phone’s battery life by clearing other apps from the background and by suggesting you the precautions about how to use your phones effectively, but battery less phones are way different as the battery doesn’t exist and hence they will be greatly helpful in the future, especially for upcoming generations [3]. So, this paper will completely focus on the methods about how to implement the technology as soon as possible and what could be the effective changes in it.

Framework for Battery Free Phones

ambient sources, and surprisingly those ambient sources are “Radio Signals or Radio Waves”, and the device uses a minute photo diode to harvest energy from the ambient light or RF sources. It consumes only 3.5 microwatts of power from these energy sources. The device has a limited range of just 31 feet from the base station and the range can be expanded to 50 feet with the help of a small “Solar Cell”.

A. Procedure for Fetching Energy from Ambient Sources

1. Harnessing Energy

In order to harness energy from the ambient sources, a base station is required and the base station is placed as per the range specified(31feet-50feet), RF energy can be transmitted in unlicensed bands or grids ranging from 868MHz to 5.4GHz from their respective base stations. It is then, that this RF energy is transfigured into DC power through some energy harnessing devices such as “Powercast’s Powerharvester Receivers”, these receivers also contain criterion or conventional antennas having an average resistance of 40-50 ohms.

Battery Less Phones

The main feature of these harvesters is to maintain the effectiveness while maintaining the disparities of RF to DC transfiguration in order to make the output stable, Although heading with the new technology of battery free phones, the procedure was way different as compared to the described one. In the phone, a “photo diode” was used to convert the ambient light into current or DC power. These photo diodes can also produce energy in absence of light as they contain optical filters and in-built lenses to perform better in dark conditions.

2. Conversion of Ambient Signals to Power with the Photo Diode

The researchers at the University easily found the fact that using a photo diode for converting ambient signals and light into current is much efficient and economical than installing a power harvester since the amount of power required for the functioning of the prototype was very less. A Photodiode is a semiconductor, with p-n junction diode and an intrinsic layer between two junctions [8]. The photocurrent is provoked by the electron hole pair because of the assimilation of light between depletion region. When photons of energy greater than 1.1 electron volt (eV) strike the diode, electron-hole pairs are originated. The potency of photon absorption depends on the energy of photons – the lower the energy of photons, the deeper the assimilation is. If the absorption occurs in the depleted region of the p-n junction, these hole pairs are wiped from the junction – due to the inbuilt electric field of the depletion region. Hence, the holes proceed toward the anode and the electrons move toward the cathode, thereby generating photocurrent. The sum of photocurrents and dark currents, which flow with or without light, is the amount of current progressing through the photodiode, And this is how a small amount of power is generated in the battery less phone with the assistance of a tiny photo diode