Published on Feb 21, 2020
EDGE is the next step in the evolution of GSM and IS- 136. The objective of the new technology is to increase data transmission rates and spectrum efficiency and to facilitate new applications and increased capacity for mobile use. With the introduction of EDGE in GSM phase 2+, existing services such as GPRS and high-speed circuit switched data (HSCSD) are enhanced by offering a new physical layer.
The services themselves are not modified. EDGE is introduced within existing specifications and descriptions rather than by creating new ones. This paper focuses on the packet-switched enhancement for GPRS, called EGPRS. GPRS allows data rates of 115 kbps and, theoretically, of up to 160 kbps on the physical layer. EGPRS is capable of offering data rates of 384 kbps and, theoretically, of up to 473.6 kbps.
A new modulation technique and error-tolerant transmission methods, combined with improved link adaptation mechanisms, make these EGPRS rates possible. This is the key to increased spectrum efficiency and enhanced applications, such as wireless Internet access, e-mail and file transfers.
GPRS/EGPRS will be one of the pacesetters in the overall wireless technology evolution in conjunction with WCDMA. Higher transmission rates for specific radio resources enhance capacity by enabling more traffic for both circuit- and packet-switched services. As the Third-generation Partnership Project (3GPP) continues standardization toward the GSM/EDGE radio access network (GERAN), GERAN will be able to offer the same services as WCDMA by connecting to the same core network.
This is done in parallel with means to increase the spectral efficiency. The goal is to boost system capacity, both for real- time and best-effort services, and to compete effectively with other third-generation radio access networks such as WCDMA and cdma2000.
Regarded as a subsystem within the GSM standard, GPRS has introduced packet-switched data into GSM networks. Many new protocols and new nodes have been introduced to make this possible.
EDGE is a method to increase the data rates on the radio link for GSM. Basically, EDGE only introduces a new modulation technique and new channel coding that can be used to transmit both packet-switched and circuit-switched voice and data services. EDGE is therefore an add-on to GPRS and cannot work alone. GPRS has a greater impact on the GSM system than EDGE has. By adding the new modulation and coding to GPRS and by making adjustments to the radio link protocols, EGPRS offers significantly higher throughput and capacity.
GPRS and EGPRS have different protocols and different behavior on the base station system side. However, on the core network side, GPRS and EGPRS share the same packet-handling protocols and, therefore, behave in the same way. Reuse of the existing GPRS core infrastructure (serving GRPS support node/gateway GPRS support node) emphasizes the fact that EGPRS is only an "add-on" to the base station system and is therefore much easier to introduce than GPRS . In addition to enhancing the throughput for each data user, EDGE also increases capacity.
With EDGE, the same time slot can support more users. This decreases the number of radio resources required to support the same traffic, thus freeing up capacity for more data or voice services. EDGE makes it easier for circuit-switched and packet-switched traffic to coexist, while making more efficient use of the same radio resources. Thus in tightly planned networks with limited spectrum, EDGE may also be seen as a capacity booster for the data traffic.
EDGE leverages the knowledge gained through use of the existing GPRS standard to deliver significant technical improvements. Figure 2 compares the basic technical data of GPRS and EDGE. Although GPRS and EDGE share the same symbol rate, the modulation bit rate differs. EDGE can transmit three times as many bits as GPRS during the same period of time. This is the main reason for the higher EDGE bit rates.
The differences between the radio and user data rates are the result of whether or not the packet headers are taken into consideration. These different ways of calculating throughput often cause misunderstanding within the industry about actual throughput figures for GPRS and EGPRS.
The data rate of 384 kbps is often used in relation to EDGE. The International Telecommunications Union (ITU) has defined 384 kbps as the data rate limit required for a service to fulfill the International Mobile Telecommunications-2000 (IMT-2000) standard in a pedestrian environment. This 384 kbps data rate corresponds to 48 kbps per time slot, assuming an eight-time slot terminal.
Are you interested in this topic.Then mail to us immediately to get the full report.
email :- contactv2@gmail.com |